Paper Ref	Sheet	Percentage Mark Awarded
FD4	1 of 39	65%

Spare Set of Claims

CLAIMS

1. A method of heat treating a steel component, comprising:

heating the steel component in a treatment atmosphere to an elevated temperature for a period of time sufficient to form a modified layer on the surface of the steel component;

- 5 wherein the treatment atmosphere comprises:
 - a carbon-containing gas suitable for creating a carbon-enriched layer on the surface of the steel component; and
 - a nitrogen-containing gas suitable for creating a nitrogen-enriched layer on the surface of the steel component.
- 2. A method as claimed in claim 1, wherein the elevated temperature is no more than 900 Celsius.
 - 3. A method as claimed in claim 1 or 2, wherein the carbon-containing gas is endothermic gas, and the nitrogen-containing gas is ammonia.
- 4. A method as claimed in claim 3, wherein the treatment atmosphere contains up to 11% by volume ammonia, the balance being endothermic gas.
 - 5. A method as claimed in any preceding claim comprising:

heating the steel component in the carbon-containing gas at a temperature of 900–955 Celsius for a first period;

introducing the nitrogen-containing gas; and

heating the steel component in the treatment atmosphere including the nitrogencontaining gas at a temperature of about 850 Celsius for a second period.

Paper Ref	Sheet
FD4	2 of 39

Construction

Claim 1

A method of heat treating a steel	Independent method claim (also
component,	covers the direct product of the
	process).
	Modifies the surface properties of a
	steel component using heat (page 4,
	lines 1-3).
	Steel – an alloy of iron. May have a
	carbon content of between 0.002%
	and 2.1% by weight as this is
	described as typical therefore not an
	essential feature (page 4, lines 4-5).
	Steel shall include nickel steel and
	lower grade steel as this is what is
	exemplified in the patent (page 6, line
	23).
	Steel component – shall be taken to
	mean an object which is made of
	steel. The object can be of different

1

Paper Ref	Sheet
FD4	3 of 39

	sizes as a this is what is exemplified
	(valve seat inserts and crankshaft for
	an engine).
comprising:	Comprising - must contain at least the
	following features but may include
	more (Virgin v Premium)
heating the steel component in a	Heating - increasing the temperature
treatment atmosphere to an elevated	Steel component – as defined above
temperature for a period of time	·
·	Treatment atmosphere – the gaseous
sufficient to form a modified layer on	surroundings which modify the
the surface of the steel component;	surface as this is what is understood
	by the skilled person and is consistent
	with Fig. 1. Suggests in an enclosed
	space, e.g. a furnace as exemplified.
	Elevated temperature – the
	temperature is not defined here but
	elevated means it is above room
	temperature. The purpose of heating
	is so the carbon-containing gas and
	nitrogen-containing gas dissociate
	therefore the temperature must be
	high enough so gases can dissociate.
	The repercussive effect of claim 2

1

1

Paper Ref	Sheet
FD4	4 of 39

	means it includes temperatures of no
	more than 900 Celsius but is broader
	than this so can be above 900
	Celsius.
	For a period of time – there is no
	indication of how long this should be
	but must be long enough so the
	modified layer forms.
	Sufficient to form a modified layer on
	the surface of the steel component –
	limits the minimum amount of time
	can be heated. Must be heated long
	enough so that a modified layer is
	formed on the surface of the steel
	component
	Modified layer – also described as the
	'case' (page 5, lines 5-6).
	Modified layer – a hardened layer on
	the outer surface of the steel
wherein the treatment atmosphere	Treatment atmosphere – as defined
comprises:	above

1

Paper Ref	Sheet
FD4	5 of 39

	Comprises - must contain at least the
	following features but may include
	more (Virgin v Premium)
a carbon-containing gas suitable for	The carbon-containing gas shall
creating a carbon-enriched layer on	include endothermic gas but be
the surface of the steel component;	broader than this as claim 3 limits to
and	endothermic gas and a dependent
	claim narrows the scope
	(repercussive effect).
	Suitable for – must be able to create a
	carbon-enriched layer on the surface
	of the steel component
	Carbon-enriched – the carbon content
	is higher than the steel component
	(page 4, line 21).
	Layer- on the outer surface of the
	steel component
	The carbon-containing gas must be
	able to provide the carburizing (page
	5, lines 19-20).

1

Paper Ref	Sheet
FD4	6 of 39

a nitrogen-containing gas suitable for creating a nitrogen-enriched layer on the surface of the steel component.

Nitrogen-containing gas – does this mean it has to be nitrogen-rich?

Nitrogen-rich – a gas that dissociates to provide nitrogen atoms at the surface of the component (page 5, lines 25-26).

Nitrogen-containing gas shall be construed as a gas that dissociates to provide nitrogen atoms.

Nitrogen (N₂) does not dissociate into nitrogen atoms at the temperatures used in heat treating steel and so nitrogen-containing gas shall not include nitrogen as cannot perform the function of carbonitriding (page 5, lines 27-29).

The nitrogen-containing gas shall include ammonia but be broader than this as claim 3 limits to ammonia and a dependent claim narrows the scope (repercussive effect).

1

Paper Ref	Sheet
FD4	7 of 39

The nitrogen-containing gas must be able to perform the carbonitriding (page 5, line 22).

Nitrogen-enriched – the nitrogen content is higher than the steel

Layer – can this be the same as the carbon-enriched layer?

The patent describes a carburized case and a nitrogen-rich case (page 6, lines 4-5) however the claim is not limited to a 2 step process where the carbon-containing gas is introduced first therefore shall also include the case where the carbon-enriched layer and nitrogen-enriched layer is the same layer

The carbon-enriched layer and nitrogen-enriched layer can be the same or separate layers.

The direct product of the process of claim 1 has either a single layer which is carbon and nitrogen-enriched or one layer which is carbon-enriched and a second layer which is nitrogen-enriched.

1

Paper Ref	Sheet
FD4	8 of 39

Claim 2

A method as claimed in claim 1,	Must include all the features of claim 1
	and
wherein the elevated temperature is	Is this for the whole period or just after
no more than 900 Celsius.	all the gases are introduced?
	Claim 1 is not limited to a 2-step
	process therefore shall be interpreted
	in that there is a period of time where
	the steel component is heated to no
	more than 900 Celsius, however, this
	shall not mean that there cannot be
	another period of time where the
	temperature is more than 900 Celsius.
	No more than 900 means it can be
	900 Celsius or less.
	Not limiting to the whole process
	being carried out at no more than 900
	Celsius also means the claim does
	not exclude the examples (page 6,
	line 28) and so that claim 5 which is
	dependent on claim 2 is not outside
	the scope of claim 2 as the first step is
	conducted at 900-955 Celsius.

1

Paper Ref	Sheet
FD4	9 of 39

No more than 900 – limits the maximum temperature but puts no limit on the lower temperature

1

Claim 3

A method as claimed in claim 1 or 2,	Must include all the features of claim 1
	or claim 1+2 and
wherein the carbon-containing gas is	Carbon-containing gas – as construed
endothermic gas,	for claim 1
	'endothermic gas' – produced by
	incomplete combustion of
	hydrocarbons in air, such as natural
	gas (methane) or propane (page 4,
	lines 28-29) as this is what is
	described in the patent.
and the nitrogen-containing gas is	Nitrogen-containing gas – as
ammonia.	construed for claim 1
	Ammonia = NH ₃

1

Claim 4

Paper Ref	Sheet
FD4	10 of 39

A method as claimed in claim 3,	Must include all the features of claim
	1+3 or claim 1+2+3 and
wherein the treatment atmosphere	Treatment atmosphere – as construed
contains up to 11% by volume	for claim 1
ammonia,	The total volume of the treatment
	atmosphere is up to 11% ammonia –
	this is clear to the skilled person
the balance being endothermic gas.	Balance – shall be the remaining
the balance being endothernic gas.	Balance – Shall be the remaining
	volume of the treatment atmosphere
	The treatment atmosphere therefore
	contains up to 11% by volume
	ammonia and the remaining volume is
	endothermic gas.

Claim 5

A method as claimed in any preceding	Must include all the features of claims
claim comprising:	1, 1+2, 1+3, 1+2+3, 1+3+4 or
	1+2+3+4 and Dependencies = +1
heating the steel component in the	heating the steel component in the
carbon-containing gas at a	carbon-containing gas – the
temperature of 900–955 Celsius for a	temperature of the steel component is
first period;	

1

Paper Ref	Sheet
FD4	11 of 39

	increased when in the carbon-
	containing gas
	900-955 Celsius – shall include
	rounding errors – 899.5-955.4 Celsius
	The period of time required for the
	heat treatment step depends on the
	size of the steel component (page 7,
	lines 5-6).
	First period shall include about 2
	hours as this is what is exemplified
	(page 6, line 30).
	Shall also include approximately 3
	hours as this is what is exemplified for
	the crankshaft – 50% longer (page 7,
	lines 5-7).
	The period must be long enough so
	that carburizing occurs (page 5, lines
	19-20) to provide a carburized case
	(page 6, lines 4-5).
	,
introducing the nitrogen-containing	The nitrogen-containing gas is added
gas; and	so there is now carbon-containing gas
	and nitrogen-containing gas present.

1

Paper Ref	Sheet
FD4	12 of 39

The nitrogen-containing gas is not present during the first period of heating.

The nitrogen-containing gas is as construed for claim 1.

heating the steel component in the treatment atmosphere including the nitrogen-containing gas at a temperature of about 850 Celsius for a second period.

The treatment atmosphere contains the carbon-containing gas and the nitrogen-containing gas.

About 850 Celsius – the use of the term 'about' means the temperature is not exactly 850 but shall include temperature either side – seems reasonable to include 840-860 Celsius. The temperature must be sufficient to dissociate the ammonia to provide nitrogen atoms for adsorption onto the metal surface while maintaining a carburization effect from the endothermic gas (page 6, lines 1-3).

Second period shall include up to 3 hours as this is what is exemplified (page 6, lines 34-35).

1

Paper Ref	Sheet
FD4	13 of 39

Shall also include up to approximately
4.5 hours as this is what is
exemplified for the crankshaft (page 7,
lines 5-7).

The period must be long enough so
that carbonitriding occurs (page 5,
lines 20-22) to provide a nitrogen-rich
case (page 6, lines 5-6).

The direct product of the process of claim 5 has a carbonized case on the steel component and a carbonitride case on top (page 6, lines 4-6).

MARKS AWARDED: 14

Paper Ref	Sheet
FD4	14 of 39

Infringement

The Gastride mode does not infringe the claims as there is no carbon-containing gas present which provides a carbon-rich layer

Gastride Plus:

Claim 1

A method of heat treating a steel	Uses a steel nitriding furnace to
component,	provide case hardening (page 10,
	lines 2-4).
	The method includes using a furnace
	to heat the steel and imparts a thin
	carbonitride layer (page 10, lines 19-
	21) therefore the method modifies the
	surface and heat treats a steel
	component.
	FEATURE DISCLOSED
comprising:	-
heating the steel component in a	Carried out in a furnace so treatment
treatment atmosphere to an elevated	atmosphere refers to the gases in the
temperature for a period of time	furnace.
sufficient to form a modified layer on	The furnace temperature can be set to
the surface of the steel component;	560-720 Celsius (above room
	temperature) (page 10, lines 20-21)

1

1

Paper Ref	Sheet
FD4	15 of 39

therefore the steel component is heated to an elevated temperature.

The temperature is high enough that carbonitriding (described as nitrocarburising in Doc B) occurs therefore assume that the gases dissociate (page 10, line 19).

The treatment atmosphere in Doc B contains both ammonia and endothermic gas as this is what is fed into the furnace (page 10, lines 17-18).

The process is carried out for 30 minutes – 5 hours (page 10, line 18). This is described as long enough to impart a thin carbonitirde layer on a nitride 'diffusion' zone' (page 10, line 20). Therefore heated for a period of time.

A carbonitride layer is formed (page 10m line 20) therefore sufficient to form a modified layer. This layer increases the strength of the

Paper Ref	Sheet
FD4	16 of 39

	crankshaft over 150% (page 11, lines
	13) therefore provides a hardened
	layer.
	FEATURE DISCLOSED
	, ., ., ., .
wherein the treatment atmosphere	The treatment atmosphere contains
comprises:	ammonia and endothermic gas (page
	10, lines 17-18).
	FEATURE DISCLOSED
a carbon-containing gas suitable for	Contains an endothermic gas (page
creating a carbon-enriched layer on	10, line 18) which is a carbon-
the surface of the steel component;	containing gas as construed.
and	Forms a carbonitride layer which is a
	carbon-enriched layer (page 10, line
	20) on the surface of the steel.
	FEATURE DISCLOSED
a nitrogon containing gas suitable for	Contains ammonia and (nogo 10 line
a nitrogen-containing gas suitable for	Contains ammonia gas (page 10, line
creating a nitrogen-enriched layer on	17) which is a nitrogen-containing gas
the surface of the steel component.	as construed.
	Forms a carbonitride layer which is a
	nitrogen-enriched layer (page 10, line
	20) on the surface of the steel.

1

1

Paper Ref	Sheet
FD4	17 of 39

As construed the carbon-enriched
layer and nitrogen-enriched layer can
be the same layer which is the case
here.
FEATURE DISCLOSED

The Gastride Plus process discloses all the features of claim 1 therefore claim 1 is infringed by the Gastride Plus process.

The crankshaft treated using this method shall also infringe as a direct product of the process (as long as it is not treated further so it materially changes).

Claim 2

A method as claimed in claim 1,	Yes
	FEATURE DISCLOSED
wherein the elevated temperature is	The furnace temperature control is set
no more than 900 Celsius.	to 560-720 Celsius (page 10, line 21).
	this is less than 900 Celsius.
	FEATURE DISCLOSED

The Gastride Plus process discloses all the features of claim 2 therefore claim 2 is infringed by the Gastride Plus process.

The crankshaft treated using this method shall also infringe as a direct product of the process (as long as it is not treated further so it materially changes).

Claim 3

Page subtotal

1

Paper Ref	Sheet
FD4	18 of 39

1

A method as claimed in claim 1 or 2,	Yes
	FEATURE DISCLOSED
wherein the carbon-containing gas is	Endothermic gas is used (page 10,
endothermic gas,	line 18).
	FEATURE DISCLOSED
and the nitrogen-containing gas is ammonia.	Ammonia is used (page 10, line 17).
animonia.	FEATURE DISCLOSED

The Gastride Plus process discloses all the features of claim 3 therefore claim 3 is infringed by the Gastride Plus process.

The crankshaft treated using this method shall also infringe as a direct product of

Claim 4

A method as claimed in claim 3,	Yes
	FEATURE DISCLOSED
wherein the treatment atmosphere	The example gas mixtures contain
contains up to 11% by volume	50% volume ammonia (page 10, lines
ammonia,	25-26). This is more than 11% by
	volume ammonia.
	FEATURE NOT DISCLOSED

Paper Ref	Sheet
FD4	19 of 39

the balance being endothermic gas.	In the first standard gas mixture the
	remaining gas is endothermic gas
	page 10, line 25).
	FEATURE DISCLOSED
	In the second standard gas mixture
	there is also air present therefore the
	balance gas is not all endothermic gas
	- therefore the balance is not
	endothermic gas.

The Gastride Plus process does not disclose a treatment atmosphere containing up to 11% by volume ammonia therefore claim 4 is not infringed.

The crankshaft treated using this method shall also not infringe claim 4.

Doc B describes that the system allows complete control of gases and temperature therefore customised treatments can be developed (page 10, lines 30-33) therefore possible that they could be infringing claim 4 – difficult to check.

Claim 5

A method as claimed in any preceding	Yes for claim 1-3
claim comprising:	No for claim 4
heating the steel component in the	The steel component is heated at
carbon-containing gas at a	560-720 Celsius (outside the range)
temperature of 900–955 Celsius for a	although it is described that the
first period;	control system allows complete

1

Paper Ref	Sheet
FD4	20 of 39

1

1

	control of temperature therefore there	
	is the possibility of using higher	
	temperatures.	
	FEATURE NOT DISCLOSED	
introducing the nitrogen-containing	The ammonia gas is present from the	
gas; and	start of the process. There is not a	
	step where there is just carbon-	
	containing gas followed by the	
	addition of nitrogen-containing gas.	
	FEATURE NOT DISCLOSED	
heating the steel component in the	Heated at 560-720 Celsius (page 10,	
treatment atmosphere including the	line 21). This is not 'about' 850	
nitrogen-containing gas at a	Celsius.	
temperature of about 850 Celsius for	FEATURE NOT DISCLOSED	
a second period.		

The Gastride Plus process does not disclose a two-step heat treatment process therefore claim 5 is not infringed.

The crankshaft treated using this method shall also not infringe claim 5.

MARKS AWARDED: 10

Paper Ref	Sheet
FD4	21 of 39

Novelty

Case hardening (page 4, lines 14-20) is prior art for novelty and inventive step as has been used for many years (before the filing of Doc A). The claims do not lack novelty over case hardening as case hardening involved only heating and controlling in a controlled manner. There is no nitrogen-containing gas nor carbon-containing gas present.

Carburizing is also prior art for novelty and inventive step as has been available in the UK for nearly 100 years (page 2, lines 4-6). Carburizing is described on page 4, line 20 to page 5, lines 11.

Doc C was published in 1980 which is prior to the filing date of Doc A therefore it is prior art for novelty and inventive step.

Claim 1

	Carburizing	Doc C
A method of heat treating	A modified heat treatment	Heat treatment
a steel component,	where the carbon content	process (see title).
	of the steel surface is	Steels with a carbon
	raised (page 4, lines 20-	range of 0.30 to
	21). Therefore a method of	0.50% can be
	heat treating a steel	carbonitrided (page
	component.	12, line 19). The
	FEATURE DISCLOSED	process therefore
		involves using heat
		involves doing near

1

1

1

Paper Ref	Sheet
FD4	22 of 39

		to modify the surface
		of steel.
		FEATURE
		DISCLOSED
comprising:	-	-
la antinar than at a cl	The formace is been also	Madified forms of mo
heating the steel	The furnace is heated to	Modified form of gas
component in a treatment	900-950 Celsius (page 5,	carburising (page
atmosphere to an	line 2) for up to 6 hours	12, line 2) therefore
elevated temperature for a	which results in a modified	involves heating in a
period of time sufficient to	surface layer (page 5, lines	treatment
form a modified layer on	4-6).	atmosphere to form
the surface of the steel	Heated so the carbon	a modified surface
component;	atoms, mainly from the	FEATURE
	breakdown of carbon	DISCLOSED
	monoxide diffuse and	
	adsorb onto the metal near	
	the surface (page 5, lines	
	3-4). Therefore heated	
	high enough so the gas	
	dissociates and long	
	enough so that a modified	
	surface layer is produced.	
	FEATURE DISCLOSED	

1

1

Paper Ref	Sheet
FD4	23 of 39

wherein the treatment	-	-
atmosphere comprises:		
·		
a carbon-containing gas	Carbon-rich environment	There is a gas-
suitable for creating a	that provides carbon	carburizing
carbon-enriched layer on	atoms which adsorb onto	atmosphere (page
the surface of the steel	the steel surface (page 4,	12, lines 3-4)
component; and	line 24).	therefore there is a
	The carbon-rich	carbon-containing
	environment can be a gas	gas as provides the
	that dissociates to provide	carburizing.
	carbon atoms (page 4,	Carbonitrided case
	lines 25-26).	layer contains both
	Endothermic gas has been	carbon and nitrogen
	used (page 4, line 28)	(page 12, lines 11-
	which is a carbon-	12). There is
	containing gas as	therefore a carbon-
	construed.	enriched layer as
	The carbon content of the	can be the same as
	steel surface is raised	the nitrogen-
	during heat treatment	enriched layer.
	(page 4, lines 20-21).	FEATURE
	,	DISCLOSED

1

1

Paper Ref	Sheet
FD4	24 of 39

	Carbon atoms diffuse and	
	adsorb onto the metal near	
	the surface and results in a	
	modified layer (page 5,	
	lines 3-4).	
	The modified layer is	
	formed from carbon atoms	
	therefore a carbon-	
	enriched layer is formed.	
	FEATURE DISCLOSED	
a nitrogen-containing gas	The example gas	Ammonia is
suitable for creating a	composition contains	introduced into the
nitrogen-enriched layer on	nitrogen (page 4, line 31)	gas carburizing
the surface of the steel	however this is not a	atmosphere (page
component.	nitrogen-containing gas as	12, lines 3-4)
остронени.	construed. No other	therefore there is a
	mention of nitrogen-	nitrogen-containing
	containing gas.	gas.
	FEATURE NOT	Adds nitrogen to the
	DISCLOSED	carburised surface
		case layer as it is
		being produced
		(page 12, lines 4-5).

1

1

Paper Ref	Sheet
FD4	25 of 39

Nitrogen forms by the dissociation of ammonia in the furnace atmosphere (page 21, lines 5-6). Carbonitrided case layer contains both carbon and nitrogen (page 12, lines 11-12). There is therefore a nitrogenenriched layer as can be the same as the carbon-enriched layer. **FEATURE DISCLOSED**

Claim 1 does not lack novelty over the carburizing process as there is no mention of the use of a nitrogen-containing gas.

Claim 1 appears to lack novelty over Doc C as all features are disclosed.

Claim 2

Carburizing	Doc C

Paper Ref	Sheet
FD4	26 of 39

1

A method as claimed in	No	Yes
claim 1,	FEATURE NOT	FEATURE
	DISCLOSED	DISCLOSED
wherein the elevated	Heated to 900-950 Celsius	No temperatures are
temperature is no more	(page 5, line 2). Heating to	disclosed in Doc C.
than 900 Celsius.	900 would be in the scope	FEATURE NOT
	of this claim as can be 900	DISCLOSED
	Celsius.	
	FEATURE DISCLOSED	

Claim 2 does not lack novelty over the carburizing process due to its dependency on claim 1.

Claim 2 does not lack novelty over Doc C as Doc C does not disclose any temperatures.

Claim 3

	Carburizing	Doc C
A method as claimed in	No	Yes – claim 1
alaina 4 an O		
claim 1 or 2,	FEATURE NOT	No – claim 2
	DISCLOSED	
	DISCLOSED	
wherein the carbon-	Endatharmia gas has been	The nature of the
wherein the carbon-	Endothermic gas has been	The nature of the
containing gas is	used (page 4, line 28).	gas carburizing
endothermic gas,	FEATURE DISCLOSED	

Paper Ref	Sheet
FD4	27 of 39

1

1

		atmosphere is not disclosed. FEATURE NOT DISCLOSED
and the nitrogen-	No mention of ammonia	Ammonia is
containing gas is	FEATURE NOT	introduced into the
ammonia.	DISCLOSED	gas carburizing
		atmosphere (page
		12, lines 3-4).
		FEATURE
		DISCLOSED

Claim 3 does not lack novelty over the carburizing process due to its dependency on claim 1 and because the process does not use ammonia.

Claim 3 does not lack novelty over Doc C as Doc C does not describe the nature of the carbon-containing gas.

Claim 4

	Carburizing	Doc C
A method as claimed in	No	No
claim 3,	FEATURE NOT	FEATURE NOT
	DISCLOSED	DISCLOSED

Paper Ref	Sheet
FD4	28 of 39

1

1

wherein the treatment	No mention of ammonia in	There is no mention
atmosphere contains up to	the carburizing process	of the amount of
11% by volume ammonia,	FEATURE NOT	ammonia used.
	DISCLOSED	FEATURE NOT
		DISCLOSED
the balance being	-	The composition of
endothermic gas.		the treatment
		atmosphere is not
		disclosed.
		FEATURE NOT
		DISCLOSED

Claim 4 does not lack novelty over the carburizing process due to its dependency on claim 1 and because the process does not use ammonia.

Claim 4 does not lack novelty over Doc C as the composition of the treatment atmosphere is not disclosed and also because of its dependency on claim 3.

Claim 5

	Carburizing	Doc C
A method as claimed in	No	Yes – claim 1
any preceding claim comprising:	FEATURE NOT DISCLOSED	No – claims 2, 3 and

Paper Ref	Sheet
FD4	29 of 39

1

1

1

1

heating the steel	The steel component is	The temperatures
component in the carbon-	heated at 900-950 Celsius	used in the process
containing gas at a	in a furnace with	are not disclosed.
temperature of 900–955	endothermic gas (page 5,	FEATURE NOT
Celsius for a first period;	lines 1-2) which is a	DISCLOSED
	carbon-containing gas.	
	Heated for up to 6 hours	
	which results in a modified	
	surface layer (page 5, line	
	5) which is a first period.	
	FEATURE DISCLOSED	
introducing the nitrogen-	There is no nitrogen-	It appears that the
containing gas; and	containing gas in the	ammonia is present
	carburising process.	from the start as the
	FEATURE NOT	steel only contains a
	DISCLOSED	single layer (page
		12, lines 24-25).
		FEATURE NOT
		DISCLOSED
heating the steel	There is no second step	Ammonia is present
component in the	where nitrogen-containing	from the start, it is
treatment atmosphere	gas is added.	not a 2 step process
including the nitrogen-		

Page subtotal

Paper Ref	Sheet
FD4	30 of 39

containing gas at a	FEATURE NOT	and no temperatures
temperature of about 850	DISCLOSED	are disclosed.
Celsius for a second		FEATURE NOT
period.		DISCLOSED

Claim 5 does not lack novelty over the carburizing process due to its dependency on the previous claim and also because it does not disclose a second step which uses a nitrogen-containing gas.

Claim 5 does not lack novelty over Doc C as Doc C does not disclose a 2-step process. Also when dependent on claims 2-4 does not disclose these features.

MARKS AWARDED: 20

Paper Ref	Sheet
FD4	31 of 39

Inventive step

Use Pozzoli approach and consider at priority date of patent (6 March 2019).

The skilled person is a provider of heat treatment services.

Gas carburization is part of the common general knowledge (cgk) as it is described as well-known and widely available in the UK for nearly 100 years (page 2, lines 4-6 and page 4, line 14 to page 5, line 11).

Heat treatment of steel components is part of the cgk as described as well known (page 4, lines 11-13). It is known and part of the cgk that by submitting the component to heating and cooling, the crystal structure of the steel can be changed into forms that are stronger or tougher.

Is C part of the cgk as published in 1980 which was a long time ago? Going to assume not as not described as being well known by either the client or Ferrocase.

Claim 1

The inventive concept of claim 1 is reducing the need for post-treatment machining or grinding (page 5, lines 12-13) by the addition of a nitrogen-rich gas to produce a shallower but harder case which avoids distortion (page 5, lines 14-18).

Take Doc C as the state of the art as also concerned with carbonitriding heat treatment. From my construction above claim 1 appears to lack novelty. Even if the carbon-enriched layer must be different to the nitrogen-rich layer, Doc C teaches that the hardenability of the case is significantly greater when nitrogen is added by carbonitriding than when the same steel is only carburized (page 12,

¹/₂

1

1

1

Paper Ref	Sheet
FD4	32 of 39

lines 24-26). Doc C also teaches that because lower processing temperatures can be used there may be less distortion and better control of dimensions than carburizing which may eliminate the need for straightening or final grinding operations (page 12, lines 30-33).

1

Therefore even if claim 1 does not lack novelty the inventive concept of claim 1 is disclosed in Doc C therefore claim 1 would appear to lack inventive step.

Claim 2

The inventive concept of claim 2 is using a maximum temperature to ensure the nitrogen-containing gas dissociates for adsorption onto the metal while maintaining a carburization effect from the carbon-containing gas (page 6, lines 1-3).

Doc C shall be taken as the state of the art as it is also concerned with a carbonitriding heat treatment process. Doc C differs in that the temperature of the process if not disclosed in Doc C. Doc C does however disclose that carbonitriding can be carried out at a lower temperature than regular gas carburising (page 12, lines 7-8). Therefore this provides motivation for the skilled person to try lower temperatures than carburisation which is part of the cgk and could be considered routine experimentation. It therefore appears that it would be obvious to reduce the temperature and claim 2 lacks inventive step.

You may be able to argue that the skilled person would not consider using these temperatures however this appears to be a weak argument as Doc C provides motivation to use lower temperatures.

Claim 3

Page subtotal

2

Paper Ref	Sheet
FD4	33 of 39

1/2

The inventive concept of claim 3 is the use of ammonia and an endothermic gas.

The ammonia dissociates into nitrogen and hydrogen at temperatures used in heat treating steel (page 5, lines 26-27).

Doc C shall be taken as the state of the art as it is also concerned with a carbonitriding heat treatment process. Doc C differs in that it does not disclose the nature of the carbon-containing gas. However, the carburizing process which is part of the cgk uses endothermic gas therefore it would be obvious to the person skilled in the art to use an endothermic gas as the carbon-containing gas. Claim 3 therefore appears to lack inventive step.

Claim 4

The inventive concept of claim 4 is to ensure the surface properties are consistent by not using more than 11% ammonia by volume (page 5, lines 30-32).

Doc C shall be taken as the state of the art as it is also concerned with a carbonitriding heat treatment process. Doc C does not disclose the amount of ammonia used in the process and there is no suggestion that there are advantages associated with using specific amounts of ammonia. There is no motivation in Doc C or the cgk to use up to 11% by volume ammonia. Claim 4 therefore appears to be inventive.

Claim 5

The inventive concept of claim 5 is the use of a two step process to provide a case layer produced by carburizing which is further hardened by carbonitriding (page 6, lines 7-9).

1

1

1

1

Paper Ref	Sheet
FD4	34 of 39

1

Doc C shall be taken as the state of the art as it is also concerned with a carbonitriding heat treatment process. Doc C does not describe a two-step process but a process where the nitrogen-containing gas and carbon-containing gas are present at the start so the resulting structure is a single layer. There is no mention in doc C that the process can be separated out into two-steps or that there are any advantages associated with having a carburized layer and a carbonitrided layer. There is also no motivation in the cgk as there is no carbontriding. Claim 5 therefore appears to be inventive as it would not be obvious to use a 2-step process.

Should check the above arguments with a skilled person to see if they agree with my conclusions.

MARKS AWARDED: 11

Paper Ref	Sheet
FD4	35 of 39

Sufficiency

There appears to be some sufficiency issues with the claims.

In your letter you mention that the temperature of the second stage of the process must be between 800 and 850 Celsius as above 850 Celsius the ammonia dissociates into nitrogen and hydrogen in the furnace which prevents a proper case layer from forming and below 800 Celsius the temperature is insufficient to provide carburization (page 2, lines 17-22). Furthermore, you state that outside these temperatures, results become highly unpredictable and from time to time fail (page 2, lines 22-24).

Therefore the temperature range 800-850 appears to be an essential feature of the invention and outside of this temperature range the invention cannot be worked. The claims therefore appear to be insufficient as the invention does not work across the whole scope of the claim. Would it be easy for the skilled person to determine this temperature range, e.g. routine experimentation? Or would it require more, e.g. a research project.

There is no basis in the patent for the range 800-855. There is basis for 815-900 Celsius (page 5, line 38) or around 850 Celsius (page 6, line 1).

Currently only claim 5 is limited to a two-step process and this includes a temperature limitation of 850 Celsius for the second stage therefore claim 5 appears to be sufficient for this feature.

There are currently no temperature limitations in claim 1 and it is not limited to a two-step process, the nitrogen-containing gas may be present for the whole process.

1

1

Paper Ref	Sheet
FD4	36 of 39

The infringement uses a temperature range of 560-720 Celsius and ammonia and endothermic gas are added at the same time therefore ideally do not want to limit to claim 5 as this would not catch the infringement.

If the process is a single step process are these temperatures still necessary or can it be worked over a broader temperature range? If not, how does the Gastride Plus process work?

The patent can be revoked for lack of sufficiency therefore need to ensure we can either make suitable amendments or arguments to overcome any insufficiency objections.

You also mention that you need to ensure that the component is at the lower temperature when the second stage starts and because of the larger thermal mass of a crankshaft it can take up to 30 minutes from dropping the furnace temperature until the temperature reaches equilibrium (page 2, lines 26-28). You indicate this is relatively easy to determine with a few practical tests (page 2, lines 28-29). This suggests that there is no undue burden for the skilled person to work the invention. I think we can therefore argue that the claim does not lack sufficiency as the skilled person can easily determine how to work the invention. Furthermore, is the problem only found with the crankshaft due to its larger size? The claim is not limited to a specific steel component.

MARKS AWARDED: 4

1

1

Paper Ref	Sheet
FD4	37 of 39

Amendments

Want to amend the claims so they are novel, inventive and infringed and also to address any sufficiency objections (discussed above).

From my analysis above it appears that claims 1-3 lack novelty/inventive step but claims 4 and 5 are novel and inventive.

From my analysis claims 1-3 are infringed. There does not therefore appear to be a claim which is novel, inventive and infringed.

Therefore turn to the description for amendments. Could include a limitation on the nitrogen-enriched layer depth of 0.07 mm-0.75 mm (page 6, line 6) as this covers the infringement (page 10, line 29) but might not be novel/inventive over Doc C (page 12, line 20).

Claim 2 is also arguably inventive and is infringed therefore limiting the elevated temperature in claim 1 to no more than 900 Celsius could be an option.

MARKS AWARDED: 1

1

Advice

Carbotreat = CT

Ferrocase = FC

The patent is granted and renewal fees are not yet due (31 March 2023) therefore in force and immediately enforceable.

The improved carburizing process using ammonia is CT's main service and losing customers to FC therefore want to stop FC.

From my analysis it appears that claims 1-3 lack novelty/inventive step but claims 4 and 5 are novel and inventive and claims 1-3 are infringed.

FC are infringing by using/offering to use the process.

Therefore I recommend amending the patent to try and a get a valid and infringed patent. As FC are already infringing I recommend brining infringement proceedings and amending under s75. It is possible to amend before beginning infringement proceedings however this will delay proceedings as have to advertise and give the opportunity for opposing the amendment. Note that FC can also oppose the amendment under s75.

Send a letter before action but unlikely to be able to settle. It would be advantageous to avoid infringement proceedings as costly and lengthy.

Remedies include damages/account of profits, delivery up/destroy, declaration of validity and infringement, costs and injunction.

Could also consider getting a UKIPO opinion on infringement but could result in FC bringing revocation proceedings.

Paper Ref	Sheet
FD4	39 of 39

1

Τ.

1

As FC have already started offering their process an interim injunction does not appear appropriate.

Should send a copy of the patent to FC so they do not have a defence of

innocent infringement which prevents damages being available.

It is also an infringement to use, dispose, offer, import or keep a direct product of the process. Therefore the UK engine manufacturer are also infringing the patent as FC are making the hardened crankshaft for them and this is therefore a direct product of the process.

For a new product the burden of proof is on the infringer to prove that it was not made using a process which infringes (reverse burden of proof).

The UK engine manufacturer are a potential client for CT therefore do not necessarily want to bring infringement proceedings against them.

Could make them aware of the patent (be careful not to threaten) and offer to use the process for them instead. Does their contract with FC allow them to break the contract early?

FC's article was published in March 2022 which was after the grant of Doc A, however, FC were approached in early 2019 by a client to make an existing crankshaft much stronger. Was this prior to the filing of Doc A? If so, did they make serious and effective preparations to use the process. They modified their earlier process Gastride, would this have been easy and taken long? If so then they will have prior user rights if this was in good faith.

Check to see if FVC have any patents/applications which affect your freedom to operate. If so then consider prior art search to revoke or cross licensing.

MARKS AWARDED: 5

Page subtotal

1

1

1

5

Page 39 of 39